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A comprehensive study of the energy, temperature, and magnetic field dependence of the
anomalous Kondo and spin-flip conductances G® (V) and G'* (V), in vacuum-cleaved metal-

semiconductor tunnel junctions is reported.

Localized Anderson magnetic moments are

characteristic of Schottky barriers at donor concentrations a few times the Mott critical

concentration N,.

These moments, coupled to the conduction electrons in the semiconductor

by the s-d exchange interaction — 2J§»E, are lightly screened neutral donors at the inner
edge of the depletion region. The background conductance in vacuum-cleaved junctions on
Si: (1.6x%10 cm™ donors) agrees satisfactorily with the parabolic barrier model, extended
to the thin-barrier limit, A detailed study shows the energy dependence of the zero-bias
Kondo scattering peak G® (V) to be in good agreement with the third-order perturbation
theory of Kondo and Appelbaum. High magnetic field studies confirm that a large negative

g shift Ag=2Jpp~—1.0 and related broadening I'=7 (Jpp) *gugH of the Zeeman transition

of the local moment occur via the exchange interaction. The broadening I' additionally pro-
duces, for I'>> kg7, a quenching of the Kondo scattering peak from -logT to -log(T/kg). The
directly measured parameters J pp and E; determine a divergence temperature Tx = (Ey/kp)

X exp(1/J pp) = (2 +1) °K, significantly higher than an upper bound~0. 5 °K, indicated by the ob-
servedaccurate log 7 dependence of G®?(0) t0 0.4 °K. The discrepancy is removed by assum-

ing simultaneous potential and exchange scattering in a ratio determined via Appelbaum’s
theory from the observed ratio G®/G®), In summary, the tunneling spectra and an extended
Kondo-Appelbaum perturbation theory, including the implied g shift, broadening I', and an
added potential scattering, are in good agreement.

I. INTRODUCTION

Interest has developed in the problem of exchange
scattering of electrons from dilute paramagnetic
impurities in metals since Kondo showed that an
exchange coupling,

H*=-2J5-5,

leads to a divergent third-order scattering with a
-log T temperature dependence, which explains the
low-temperature resistivity minimum common in
dilute alloys.! Here S and & represent the spin of
the localized magnetic moment and a conduction
electron, respectively, and J is the exchange-cou-
pling energy. This interest has been enhanced more
recently by theoretical arguments 2° that in the
limit of strong coupling or low temperatures, when
the perturbation series can no longer be assumed
to converge, a new physical state might appear.
The new regime, which is expected to appear be-
low a temperature T, is characterized by standing
waves of electrons of opposite spin projection in
the vicinity of each local impurity moment. This
state has been described as quasibound* and as a
scattering resonance. »® The characteristic tem-
perature Ty is given by a relation of the form

TK=(E0/kB)el/JﬂF’

where J is the exchange energy, E, an energy cut-

(1.1)

(1.2)

2

off, and py the density of states. T} does not
sharply define a transition, but rather sets a tem-
perature scale on which departures from perturba-
tion-theory estimates of, e.g., susceptibility and
resistivity should appear.

This paper is not primarily concerned with the
proposed quasibound state. Indeed, our experi-
ments show no evidence for a separate low-tempera-
ture behavior. We expect, however, that the tech-
niques which we have employed will be extended to
lower temperatures and/or to junctions with stronger
coupling in which these effects should be important,
and will provide a definitive test of the several
theories.

We shall describe tunneling experiments that
provide a direct spectroscopy of the spin-flip and
Kondo scattering associated with the exchange in-
teraction (1.1). In zero external magnetic field,
the experiment measures directly the energy de-
pendence of the third-order scattering rate Wg”,
whereas in high fields we will see that the exchange-
coupling parameter Jpy can be inferred from the
energy dependence of the inelastic spin-flip scat-
tering W2,

Magnetic moments localized near one edge of a
suitable tunnel junction may have an exchange cou-
pling Jp, to conduction electrons in the electrode
comparable in magnitude to couplings present in
dilute magnetic alloys. Figure 1 shows schematically
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the location of the moments near the right-hand (a)
side of a barrier. Detailed theoretical work by
Appelbaum® and by Anderson, ” employing the tun-
neling Hamiltonian formalism, has shown that Kondo
scattering attenuated by a barrier transmission
factor T2%~ e %! can transfer electrons across the
barrier, thus contributing to a measurable current
j.

To understand this exchange-tunneling version of
Kondo scattering, we first write the transition
probability per unit time W;; for an interaction
Hamiltonian H’, including the third-order term

W, = & (IH'1|2 +2 HigHy Hyy +cC. c)
kEL iT Ek

(1.3)

If we let H' = H*from (1.1) and restrict the conduc-
tion electron & to the right-hand electrode, W, j
will give the spin-flip (|H},1%) and Kondo (third-
order) scattering rates between the states ¢ and j
in the a electrode: No tunneling is involved. The
operator H* may also be written as

=—JZ)[

(alay, —a}a,.)

+S*(al ap,) +S (ahay )], (1.4)

where a, and @} are annihilation and creation oper-
ators for an electron of wave vector £ in the (@)
electrode and the S* operators are raising and low-
ering operators for the z projection of the localized
spin operator S. Kwe simply replace a' by bt in

eV
B %
t ' t
2 9 2
Electrode ' Electrode
b Barrier a
FIG. 1. Schematic diagram of tunnel junction. Local-

ized magnetic state ¢, strongly overlaps conduction-
electron wave functions in the a electrode. Weaker inter-
action with b electron wave functions leads to exchange-
tunneling events.
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this expression, we have one part of the exchange-
tunneling operator H™*; if we replace a by b, we
have the other part:

H™ =~ T, Z’Z‘ [S, (bLaku - b;-ak' J
Ry

+S* (0] ap ) +S"(0hay ) +8,(al by, — al by )

+8%(a@}bp) +57(ahby )] - (1.5)
This operator leads to electron transfers across the
barrier in which the tunneling electron and local
moment may reverse their spin projections. [If
we regard the q and b electrodes as part of a total
system, H” and H7* are two contributions to a
total exchange interaction (1.1).] Since H”* in-
volves electrons on opposite sides of the barrier,
its matrix element T; will be smaller than J by a
factor of approximately e™?, where k is the decay
constant and ¢ the thickness of the barrier.

The rate W, for a tunneling transition, where
¢ and j now contain conduction-electron states on
opposite sides, can be obtained by setting

H =H*+HT*+HT . (1.8)

HT includes the usual elastic tunneling. Upon sub-
stituting Eq. (1.6) into Eq. (1.3), Appelbaum®
finds in the tunneling rate W,; terms

@ - (2n/h) iH x| 2~ 72 (1.7
and
2 HTxHTx x
W - ;if(?k Byl +c.c.>~T3J, (1.8)

in addition to other nonexchange terms (e.g., elastic
tunneling T2~e"%¢), These two terms correspond,
respectively, to spin-flip and “anomalous” third-
order (Kondo) scattering across the barrier, since
H™*[Eq. (1.5)] and H* [Eq. (1.4)] involve the same
spin operators S. These transition probabilities,

in fact, differ from the usual spin-flip and Kondo
scattering rates only by a scale factor ~¢"#¢, As
we shall see, the characteristic energy (i.e., bias
voltage), temperature, and magnetic field depen-
dences of W& and W{}’ permit their separation from
other contributions to the total transition rate
across the barrier.

Kondo! showed that the anomalous -logT behavior
originates in W§’, Eq. (1.8), from those inter-
mediate states & reached by a spin flip of the local
moment. The E, in the denominator of (1. 8) are
intermediate-state energies of the conduction-elec-
tron-localized-moment combination. Thus E; - E,
=¢; - €,— A, where the €’s are conduction-electron
energies and A is any energy associated with the
spin-flip transition of the moment. Kondo explicitly
requires that an unoccupied intermediate state ¢,
is available for the conduction electron performing
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the initial transition €; -~ ¢, by weighting the cor-
responding terms in the sum by 1-f(€,), where f
is the Fermi function. If the conduction-electron
intermediate state is initially occupied, on the
other hand, the scattering can proceed as €, €
followed by €;~¢€,; in this alternative process,
weighted by f(€,), a portion of the spin-matrix ele-
ment occurs with a negative sign. Thus the Fermi
functions do not disappear, as in potential scatter-
ing, but add as 1 - 2f(e,) =tanh(3B¢,), where
=(kpT)™. In a standard approximation, the third-
order contribution becomes

£ tanh(}B¢) de

W, 6(E; - E,) T?,Jp(EF)p/
E;-¢

o (1.9)
This integral contains the logarithmic energy
and temperature dependence characteristic of
Kondo scattering. An important assumption in
this formulation is that the intermediate states &
have energies E,=¢€,+ A sharp compared to k3T
The energy dependence of the scattering is di-
rectly revealed in the voltage derivative of the tun-
neling current j(V). In particular, the contribution
to the conductance G(V)=(3/8V)j of the third-order
scattering W{¥, Eq. (1.9), is given by Appelbaum®

as
Ep
GOV)=aT? Jpr/ tanh( tanh(zf¢)
E

X C}%f(E -eV)dedE for H=0. (1.10)
Since at low temperature (3/9E)f(E - eV) is sharply
peaked at eV =E, with width ~ 2,7, G®(V) is an
accurate measure of W{}(eV). Similarly, the sec-
ond-order transition probability W3’ produces an
analogous conductance G @ (V, H). Th1s contribution,
corresponding to spin-flip scattering, becomes in-
elastic in a magnetic field H, as the tunneling elec-
tron must supply the excitation energy gugH= A.

A characteristic increase in G®(V, H) occurs at
V=xA/e, and the Zeeman transition line shape of
the local moment may be displayed directly by mea-
suring the derivative (d/dV)G® (V, H). This peak
represents the Zeeman transition for the local mo-
ment as it is coupled to the conduction electrons in
the nearby electrode. Thus, an appropriate spin
Hamiltonian should contain the assumed exchange
coupling (1.1):

H,=-gouigS -H—-272,8-5, . (1.11)

In an applied field H, the conduction electrons '6,
are polarized by the field; hence the summation is
proportional to P=yH. Both terms in the spin
Hamiltonian are thus proportional to H and an ef-
fective g value is obtained ®'° by collecting the
coefficients of H:
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g=80+2Jpp. (1.12)

This “Knight shift” 2Jpis obtained taking for y the
Pauli-spin susceptibility. If the value g, is known,
the coupling parameter Jpz can be obtained!! from
the g value of the (d/dV)G®(V, H) “resonance.” The
coupling H* also produces rapid spin-flip exchanges
between the local moment and conduction electrons
in the nearby electrode.

The corresponding lifetime broadening® !° of the
Zeeman transition is related to the g shift by a
Korringa-like formula

T=7/T,=7(Jpp)’A (1.13)

for A=gugH>kzT. The proportionality to H ap-

pears because the number of conduction electrons
able to accept energy A in deexcitation of the local
moment is proportional to A.

Finally, we note that in high magnetic fields, the
presence of the inherent lifetime broadening T,

Eq. (1.13), must be taken into account in the third-
order scattering, as it broadens the intermediate
spin-flipped states E,, and for I' >k, T reduces the
Kondo scattering rate from -log7 to -log(I'/kp) 12

The parameter Jp, determines the size of these
effects. It is basically this parameter which deter-
mines the ratio of Kondo scattering to spin-flip
scattering. As we shall see, there is no reason to
assume —Jpy to be small; it may easily be greater
than 0. 25.

In previously reported !® studies, zero-bias con-
ductance peaks in metal-insulator-metal tunnel
junctions have also been interpreted in terms of
Appelbaum’s theory.® A recent review, !* however,
has concluded that the reported verification of
Kondo scattering G® should be regarded as tenta-
tive, since the magnetic field dependence was inter-
preted entirely in terms of second-order scattering.
On the contrary, we find that the equivalent assump-
tion, that G® is independent of magnetic field, is
invalid.'® Other advances represented in the pres-
ent study are that the tunneling barrier and back-
ground conductance spectrum are understood quan-
titatively, a microscopic model!! of the local mo-
ment is available, the voltage dependence G® (V)
at zero field is carefully compared with the Kondo
integral, and the g shift and associated broadening
are recognized as essential to the physics and are
studied experimentally, "2 allowing us to predict
the characteristic temperature T.

This paper reports fully an experimental study
of spin-flip and Kondo scattering in vacuum-cleaved
metal-semiconductor (Schottky-barrier) tunnel
junctions. *-!7 This type of junction is unique in the
degree to which its chemical composition can be
specified. As indicated in Fig. 2, the tunneling
barrier lies entirely in the semiconductor (shown
as N type) whose properties are well understood.
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FIG. 2. Schematic diagram of a Schottky-barrier
junction on degenerate N-type semiconductor. Values
indicated are appropriate to silicon at donor concentra-
tion Np=~ 10®cm™. Conduction-band edge represents
the energy of any of the equivalent EO minima. Localized
magnetic moments occur at inner edge of depletion
region.

n-Type Degenerate
Semiconductor

Depletion Layer
( Parabolic Barrier)

Further, the quadratic variation of the band-edge
energy with position in the semiconductor depletion
region, which follows from Poisson’s equation, de-
fines an average tunneling barrier for which the
electron penetration and transmission have been
calculated exactly. !® Zero-bias conductance peaks
G®(V) are a characteristic feature of such Schottky-
barrier tunnel junctions for donor (or acceptor)
concentrations several times the Mott critical con-
centration N,.'' The magnetic moments inherent in
such junctions are lightly screened neutral donor
states localized at the inner edge of the depletion
region. Such S=3 moments are relatively simple
and are well described by the Anderson model.”
Some of their properties can be inferred from the
well-known magnetic and optical properties of non-
interacting shallow donors.

We shall see that two basic physical models, the
parabolic barrier!® and the localized donor model
of the magnetic moment, together with an extended
Appelbaum-Kondo theory, ® permit a semiquantitative
understanding of all features of both the elastic back-
ground conductance and the magnetic scattering con-
ductance.

We now summarize the theoretical considerations
necessary to understand the experimental results.

II. THEORETICAL CONSIDERATIONS

A. Exchange Tunneling in Magnetic Field
The purpose of this section is to summarize
Appelbaum’s tunneling Hamiltonian theory6 of the
exchange-tunneling conductance in the presence of
a magnetic field.
In the tunneling Hamiltonian approach, 1 the
junction is regarded as two nearly isolated systems
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described by H* and H®, which are weakly coupled
by a barrier region, as indicated in Fig. 1. Note
that the barrier is included in both systems, and
that, e.g., wave function ¢, oscillates to the right
of 3¢ and decays exponentially in the barrier to the
left of 3¢. A single magnetic state ¢, is located at
the right-hand (a electrode) side of the barrier.
Since the a and b systems are nearly isolated, one
can speak of eigenstates ¢,, and ¢,, of Hamiltonians
H® and H®, with energies €% and €2, respectively.
It is plausible that an operator H’ should describe
the coupling between the a and b systems afforded
by the potential barrier and the localized magnetic
state ¢,. One can then use perturbation theory to
calculate the corresponding rate W;; for transitions
between states ¢ and j which differ by the transfer
of one electron across the barrier:

! ’ ’
W{jzé(Ei—Ej)% ( IH,U|2+’#Z‘. fl%flfi—g—f +cC.cC. +-~-).

(2.1

The state 4, of energy E,, in general will describe
a conduction electron of energy €; plus the localized
electron ¢,, which may have its spin projection M
changed in a transition {—~j. The resulting current
density is

§(V)=e23Py20 Wi f(eD[1 - fled +eV)]
m ij

eI Py I W f(€d+eV)[1 - fle)]. (2.2)
m ij

Here i and j imply quantum numbers k, 3, and M,
representing, respectively, the wave vector and
spin of the conduction electron and spin projection
of the local moment; f(€) is the Fermi function; P,
is the probability of a spin projection M; and the
applied bias voltage is V. The conductance

-4 .
G(V)—dV J (2.3)
is the quantity normally measured, as it contains
the most direct physical information. Appelbaum
expresses the Hamiltonian H of the total system in
terms of field operators ¥'(¥) and ¥(¥), such that

¥ (F)¥(F) is the electron density operator at ¥:
H=[ W@ p%/2m+ VEF) d*
+3 [ [E @V EIWE - F)eEEF) d¥r dr
(2.4)

Here W(F — ') is the electron-electron interaction
and is included to treat exchange interactions with
the state ¢;. The next step is to expand the creation
operator in terms of the states of physical interest:

v(T) =Z>Iz a;rz(f’ka(F) +Ek‘ b pep(@) +2M d}ﬂ’a(F -R).
(2.5)

Here d}; creates an electron of spin projection M in
state ¢,. Direct substitution of (2. 5) [and the anal-
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ogous expression for ¥(¥)] into (2. 4) generates a
number of terms, which are classified by the
creation and annihilation operators they contain.
Thus

Dyelala, and Ty eho} (2.6)

where the €,’s are electron energies on the a and
b sides, respectively, belong in H® and H®. On
the other hand, terms like

20 T alby, 2.7
kR

which correspond to electron annihilation on one

side and creation on the other, belong in H’, and
describe the usual elastic tunneling.

Tunneling accompanied by interaction with the

localized state ¢, is described by
2 W, k'adebk'dM’

koK

(2.8)

which for M # M’ implies a spin flip of the locul
moment on ¢,.
Interaction of the local state with electrons in
the nearby (a) electrode is described by
2 Wypdhaldyap .

Ry R

(2.9)

Terms (2. 8) and (2. 9) contribute to “exchange tun-
neling” with matrix element 7'; and to the exchange
interaction J, respectively.

It is useful to express the d operators in terms
of spin operators, through the relations

~dla, s =da,, s,=3dd,-da). (210
Finally, the terms in H' are given6 as
H'=HT+H™ + H”, (2.11)
H™ =~ TJ E S [(alby, —a}bp)+c.c.]
+S"(a,z_bk. +b} @) +S7(albee + DL}, (2.12)
(2.13)

HT = (T+ TA)Z." (a;Mbk'M + b;Ma,z:,,,),

H*=-J2 [S,(a},ap,—a}.ay.)+S (a},ap )
e (2.14)

The magnetic field H and applied bias energy eV
appear in H®:

H°=2",%ala, + 2 (€2 +eV)blb, - gusS -H. (2.15)
Equation (2. 14) is equivalent to Eq. (1.1) and re-
presents the s-d exchange interaction. In our
sign convention, which differs from that of Appel-
baum, J <0 implies antiferromagnetic coupling.

HT* differs from H”* only by the appearance of elec-
tron creation operators from both sides of the junc-
tion. The matrix elements J and T, are formally

) +S*(a}.ap,)].

L. WOLF AND D. L. LOSEE 2

I= [ [ $3E )0 ,E)WE - Tp)by (Fr)0 2(Fy) dmy dTs
(2.16)

Ty= f f‘f"}(ﬁ)%ﬁz)w(ﬁ - Fz)d’a(fi)(f)’;ﬁz)dﬁ ar .
(2.17)

-Kt

Roughly T; is smaller than J by a factor ¢
W(F, - ¥,) is not simply e?/e7r,,, which gives J>0
(ferromagnetic coupling), but is dominated by a
mixing effect!® which gives J<0.

The conductance is obtained by inserting the ef-
fective Hamiltonian H' of Egs. (2.11)-(2.15) into
expression (2.1) for the transition rate W,;;. Of
the terms generated, Appelbaum selects as impor-
tant those of order (T +T,)%, (T+T,)T;, and, most
importantly, those of order 7% and T%J, which
correspond, respectively, to spin-flip tunneling
and Kondo tunneling. In these latter cases, the
matrix element squared of the raising or lowering
operator for the spin S may be a factor in W;;. "¢
In calculating the current contributions from these
magnetic scattering rates from Eq. (2.2), it is
necessary to sum over the spin projections M of
the localized moment. In thermal equilibrium, the
magnetization { M) is

(M) = ?SPMM BSQ }-otanh(sz > s=§(.2.18)

Here A=gugH and By is the Brillouin function. In
computing the conductance, energy-conserving 6
functions relate the energies eV and A in the argu -

ments of Fermi functions in Eq. (2.2). These oc-
cur in combinations
1-2f(eV+ A)=tanh[(eVzA)/2k,T], (2.19)

corresponding physically to an inelastic threshold
at eV+ A, The broadening of the threshold result-
ing from the thermal-electron energy distribution
in the electrodes is included in the integral

© 5 , E’' ’
H(E/kBT)=L a5 [ E _E)tanh( 2k T >dE(z. 20)

As shown by Shen, ** the resulting modification of
tanh(x) is

H(x)= (= 1+ - 2xe*)/(1 - %) . (2.21)
The total conductance through second order is

G=GW+G®, (2. 22)

G = (4re?/m)pLpL[T 2+ N,(2TT,+ TH)] , (2.23)

G® = (4re®/M)pLph TANAS(S + 1) + 3 MY HG + )]},
(2. 24)

where v=eV/2kpT, 6=04/2ksT, and N, isthe density
per unit area of magnetic states.
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The only important third-order term® is of order
T2J, and [see Egs. (1.8)-(1.10)] is identical,
apart from a scale factor, to the term discussed
by Kondo.! The effect of magnetic field on this
term has been considered in detail by Appelbaum.®
The only intermediate states 2 of importance in the
sum in Eq. (2.1) involve a spin flip of the local
moment. Hence the Zeeman energy A always oc-
curs in the energy denominator. Kondo scattering
can occur with or without a spin flip between initial
and final conduction-electron states, and this dis-
tinction becomes important in case H#0. As an
example, the non-spin-flip rate

W, e« T%M{[S(S+l) -M(M+1)]2 €1 —Ale _)A

+[S(S+1)-M(M- 1)]? €k+f£€€i - A}a(ek -€;)
(2. 25)
becomes
(3 (e)o _ TZJ tanh(3B¢,.)
Wi (€)= MZ%) oAt (2. 26)

when the bracket terms, matrix elements of S°S*
and S*S”, corresponding to electron and hole inter-
mediate states, respectively, are combined. We
assume that T, and J are constant in a range

- Ey < €< E; and zero elsewhere. Conversion to
an integral and factoring out the energy density of
states p% gives

Wyen(E)=—TEIM?p%g(E - A),

where

g(e):]PfE0 tanh(38¢)de’

s e (2.27)

The major contribution to the integral g(e), of
course, comes near €'=€. As € —~0, the change in
sign produced by tanh(3B¢), a step function at €=0
of width k5T, compensates for the change of sign
in the denominator giving a logarithmic peak. Note
that the magnetic field shifts the peak in g(€) to
€=A. Finally, the third-order conductance is®

G(a)(v’ H)

=C{1 (M®y (M)

s+ Tasis+1) [H(s - )+H(6+v)]} FleV)

C [, (M) (M)
T2 <1 SS+1) T ss+1) H(5+V)>F(6V+A)
¢ (M? (M)
_<l+s(3+1) T S(S+1) H(ﬁ—v)) F(eV - A),
(2.28)
where

C=(-me?/M)S(S +1)p%peN,T%J,

and

F(eV) pr fE" ta“h(ZBE de’ :E fle -eV)de .
(2. 29)

Since (8/9€)f(€ — eV) is sharply peaked at € =eV,
F(eV) is a slightly broadened version of g(eV).

Our numerical studies of this integral indicate that
it is well approximated by

¢ In [(eV +(akT)2:|’

F(eV)= (2. 30)

Ez
with =2, for |eV|<E,.
B. Extensions of Appelbaum’s Theory

We advance simple physical arguments to show
that the central assumption of an exchange coupling
H*=-2JS -5 has further consequences observable
in the tunneling experiment. These are the g shift
Ag=2Jpy, to first order, and a related broadening
of the Zeeman transition'? of the local moment,

Eq. (1.13). This width tends to quench Kondo scat-
tering in a magnetic field!? by cutting off the singu-
lar function g(€) for € and kT less than T.

The Anderson model of a localized magnetic
state, "' as we will see, indicates that —Jp, need
be no smaller than 0.25. There is thus no a priori
reason to assume that these effects are small; in
a sense they occur to the same order as the anom-
alous scattering.

The spin-flip threshold guzH=leV| in G® re-
veals the Zeeman excitation energy of the local
moment as it is coupled by H*, Eq. (1.1), to the
conduction electrons in the adjacent electrode.
Thus we take as spin Hamiltonian for the local mo-
ment

Hy=-gougS -A-202S.5. (2.31)
i

Here g, is the g value for the local moment in the
absence of exchange coupling J. The conduction-
electron spins & polarize in an applied field H to
produce volume spin magnetization P=x,H, where
Xp is the Pauli susceptibility

xp=2120(Ep). (2.32)

In this expression p(€z) is the density of states of
one spin index at the Fermi surface. The sum in
the second term in (2. 31), on the assumption that
the spins ¢; are in thermal equilibrium, equals
S.xpH/ . Collecting coefficients of H and using
(2. 32), one finds

g=89+2Jp% . (2.33)

Thus a negative g shift occurs for antiferromagnetic
coupling J<0. A more sophisticated calculation, *°
valid at T=0, gives the relation

2Jpgp
= H. 2.34
s [g°+ 1-Jpy ln(guBH/Eo)J Ha (2.34)
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Since the denominator goes to zero at gugH=E,

X @7 = kyT,, Eq. (2.34) is valid only for gugH
>kTg. If the log term in the denominator is negli-
gible, a g value is defined and Eq. (2.34) reduces
to the first-order formula (2. 33).

The g shift is a consequence of the diagonal ele-
ments JS,(a},a,, -a}_a, ) of the exchange interaction
(2.14). The remaining terms, J[S*(a}.a,,)
+S™(al,ay )], produce mutual spin-flip transitions
of the local moment and a conduction electron.

This broadens the Zeeman transition of the local
moment, and permits rapid energy exchange be-
tween the local moment and a conduction electron.
Since we assume that the conduction-electron spins
remain in thermal equilibrium, a short spin-lattice
relaxation time 7, for the local moment is assured.

The physics is especially clear in the limit
gugH> kyT when negligibly few conduction electrons
are available with energy sufficient to excite the
local moment; hence its lower spin level remains
sharp. On the other hand, electrons in an energy
interval 0 2 € > —gugH of the spin-up conduction
band, as shown in Fig. 3, can accept energy gusH
from the local moment. The corresponding deex-
citation rate®

1/T,=(n/0)(JppVgupH=T/%

is thus proportional to gugH, and is by definition®
the inverse of the spin-lattice relaxation time T,.
Here no distinction appears between level broaden-
ing %/T,, strictly the imaginary part of a self-
energy, 1% and #/T,, lifetime broadening produced
by the relaxation process, ° both of which result
from off-digonal elements of H*. A clear discus-
sion of this is given by Walker.® Simply replacing
kpT by gugH in the Korringa formula of NMR for
%/T, gives a result which differs from Eq. (2.35)
by a numerical factor'® of 4. This implies an
energy width %/7T, four times larger than is directly
observed in the experiment. We conclude that this
extrapolation of the usual result'® must be an over-
estimate, and that the correct answer for guzH

> kT is T'=%/T,=%/T, as given by Eq. (2. 35).
This situation may reflect the fact that for kg T

> gugH both excitation and deexcitation of the local
moment can occur via conduction electrons. For
kpT > gugH, fluctuations in the local density of
conduction electrons can contribute to I' by modulat-
ing the resonance frequency through the coupling J.
Walker?® gives in this case

= 2 1(Jpp)hkyT . (2. 36)

Higher-order corrections involving JppIn(gug H/E,)
have been given®!% as in the case of the g shift,
such corrections should be important only near 7.
The above discussion is based on the s-d exchange
model. The local moments in the experiment are

more precisely described by the Anderson Hamil-

(2.35)
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FIG. 3. Shift of spin sub-bands in a magnetic field,
which leads to Pauli-spin paramagnetism. Note that in
text E=0 usually denotes Fermi level.

tonian, " which is equivalent to the s-d exchange
Hamiltonian only for small Jpg.® It is possible
that effects peculiar to the Anderson model are
important for Jpz~0.5. To our knowledge, pre-
dictions of g values and broadenings for the
Anderson model are not available, although a re-
cently introduced theoretical scheme?® may permit
these predictions. Such Anderson model effects
may be more important than the logarithmic cor-
rections (above) to g anc T'.

We have seen that a lifetime broadening T' [Eq.
(2. 35)] is an inherent feature of the Zeeman tran-
sition of the exchange-coupled local moment for
A>PEgT. This broadening thus occurs in the spin-
flipped intermediate states important in Kondo
scattering. One can see that an energy uncertainty
T entering the denominator of the integral

E
G(e)= [0 [tanh(4Be")/(€ - €")]de’ (2.37)
will cut off the peak of g(¢) at € = 0. Suhl has
pointed out?! that the appropriate treatment of a
distribution R(¢) of intermediate-state energies is
to replace everywhere tanh(3B¢) by the convolution

S(e)= /. R(e’)tanh[2B(c ~ €')] de’ (2. 38)

as in g(e) and F(eV). The distribution appropriate
to lifetime broadening is the Lorentzian

R(e)=(T/n)/(T%+€?) . (2. 39)
In the limit T'>> k, 7, it is easy to find that
S(e)= (2/m)tan™ (/T . (2. 40)

Since this function is again a step at € =0, but with
step width ~I" instead of width ~ %, 7, one expects
that



gle)~ -3 1n[(e?+T?)/EY] . (2.41)

The peak g(0) is thus reduced from -log(kz7T) to
-logI'. Our point of view is that any mechanism
leading to an energy width in the transition to the
spin-flipped intermediate state will reduce the
peak. In magnetic resonance parlance, the re-
sonance width %/T,, is what counts. This is con-
sistent with Suhl’s example of dipole-dipole cou-
pling, 2! which does not contribute to the spin-lat-
tice relaxation rate %/T,, but nevertheless gives
an energy width and quenches the Kondo scattering.
A different mechanism has been proposed by other
workers, 2 who argue that, since Kondo scattering
may be regarded as an interference between two
scattering amplitudes, a short coherence time
should reduce the resonant scattering rate. The
available coherence time is limited by 7y, the spin-
lattice lifetime of the local moment. In our experi-
ment at high field, since T,=T,, the two mecha-
nisms are coincident. In other situations, as in
Suhl’s example, *! one may more readily distin-
guish the two mechanisms. The broadening is
included in the G®’ terms by similarly convoluting
the H(x) function representing the inelastic thresh-
old for Zeeman excitation. Thus we replace H(x)
defined in Eq. (2.21) by

= _ [T Hlx-y)
H(x) “L T —1"2+y_2“_ dy

(2. 42)
in the G® conductance, Eq. (2.24). The G® equa-
tions (2. 28) and (2. 29) should be modified by re-
placing H(x) and by replacing tanh(%8¢) by S(¢) in

(2. 29).

It is worthwhile to compare the tunneling experi-
ment with the conventional ESR experiment in mea-
suring the Zeeman transition of a local moment.

As we have seen, the derivative d?I/dV? reveals the
Zeeman spectrum of the local moment; the con-
duction electrons are evident only through the nega-
tive g shift. In an ESR experiment, on the other
hand, absorption from the microwave magnetic
field H, coswt occurs by the local moment and the
conduction electrons. A necessary condition for
separating the contributions of the local moments
and the conduction electrons is that their respective
g values differ substantially. However, this is
often not the case, for strong exchange coupling
between the conduction electrons and the local mo-
ments can give a motional averaging effect so that
only one resonance is observed. One can see what
is involved in this case by imagining that the re-
sonant frequency of a particular electron spin jumps
back and forth randomly between values gouzH/%
and g,ugH/% as the electron by diffusion and the
exchange mechanism spends some time in the con-
duction band and some time bound as a local mo-
ment. If the rate wp, at which the frequency
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changes occur, exceeds the spin-lattice relaxation
rate 1/T; and becomes comparable to the frequency
difference Aw = (g, - g,)uzH/7, the two resonances
merge. In the limit of w, > Aw, the g value of the
resultant motionally narrowed resonance depends
on gy, &, and on the relative concentrations of con-
duction electrons and local moments. It is for this
reason that large first-order g shifts are not ob-
served in ESR measurements® on dilute magnetic
alloys.

In the foregoing discussion we assume w, > 1/7};
thus the conduction-electron spins are more tightly
coupled to the local moments than to the lattice.
Hence they are not necessarily in thermal equilibri-
um. In the tunnel junction, on the other hand, an
estimate shows that thermal equilibrium is main-
tained by the conduction-electron spin system. In
addition, the local moments in the ESR case are
excited coherently by an applied microwave field,
while in the tunnel junction there is no reason to
assume coherence between spin-flip transitions
produced by electrons tunneling at different places
over the area of the junction.

In summary, the tunneling experiment directly
probes the energy, temperature, and magnetic
field dependence of the scattering rate W,; produced

by the exchange coupling H* by measuring the ad-
ditional current through the barrier. The eV =0
limit of the anomalous conductance corresponds
directly to the incremental resistivity produced by
exchange scattering W, in the usual bulk measure-
ments; in fact, the same Kondo integral occurs in
both contexts. Comparison of the added tunnel con-
ductance at V=0 to the incremental resistivity pre-
dicted by the nonperturbative theories?-® of exchange
scattering is also appropriate. The magnetic sus-
ceptibility of the local moment bears the same re-
lation to the anomalous conductance as it does to
the incremental resistivity in bulk measurements.

C. Schottky-Barrier Tunnel Junctions

Group-IV semiconductor surfaces exhibit a den-
sity of surface states strongly peaked in the lower
portion of the forbidden gap.?#% Equilibrium of
an N-type semiconductor-vacuum interface is
achieved by partial filling of these states with elec-
trons removed from donors in a region near the
surface. This typically locates the surface Fermi
level at a point approximately %Eg above the va-
lence-band edge at the zone center. For an N-type
sample as shown in Fig. 2, the conduction-band
edge thus bends up by eVy~% E, to form a barrier
of height eV for conduction electrons. Since
eVy> kg T, most of the barrier region is totally
depleted of extrinsic electrons. If follows from
Poisson’s equation, assuming random distribution
of donor ions, that the variation of the conduction-
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band edge with position, taking z=0 at the surface,
is

V(Z) = VB(Z - Zo)z/Zg , (2. 43)
where the depletion layer depth z, is ?®
2o=[€(eVy + p)/2nNpe?]! /2 (2. 44)

Here €, up, and Nj are the dielectric constant,
Fermi degeneracy, and donor concentration, respec-
tively. The parabolic dependence [Eq. (2.43)] is
inaccurate near the inner edge of the region where
free charge occurs with consequent screening.
Since the barrier is low in this region, the appro-
priate modification to an approximate exponential
variation is unimportant in determining tunneling
probabilities. 2 In an intimate metallic contact to
a group-IV semiconductor, the above features are
nearly unchanged.?*? The surface states overlap
strongly with the metallic conduction states and
are presumably delocalized. The depletion layer
depth z, is typically ~ 100 A, much larger than an
dipole layer in the metal, which can thus be ne-
glected. The Schottky barrier appropriate to the
present studies is shown in Fig. 3.

The tunnel conductance of the parabolic barrier
model which is suggested by the above has been
calculated exactly by Conley, Duke, Mahan, and
Tiemann'® (CDMT) by matching wave functions at
the boundaries z=0 and z=2z,. The barrier trans-
mission factor 1712 is directly obtained from the
ratio of |¥ |2 on the opposite sides of the barrier.
The assumed wave functions in the semiconductor
bulk and in the metal are effective-mass states,
while the eigenfunctions in the barrier region,
characterized by the potential (2.43), are parabolic
cylinder functions. The latter functions neglect
mixing®® of valence-band states in the barrier;
hence the procedure is most accurate for eV<-2‘~E‘.

An important feature in determining the conduc-
tance spectrum G(V) is that the applied voltage V
influences the barrier transmission by varying the
barrier thickness through the relation

2y=[€gleVy + up—eV)/2uNpe?] /2 .
The conductance increases approximately as
G(V)~ eV /E1ye=eVB/ Py (2.46)

for large positive bias, corresponding to electron
flow into the metal as a result of the decrease of
zo with V. The parameter E,,

E,=[1Npe? 1*/me,]' 2 = 3hw, , (2.47)

is 42.4 meV for Si: (1.6%10'° cm™® P). Note that
for increase of positive-bias voltage beyond /e,
there is no corresponding increase in the number
of semiconductor electrons able to tunnel into the
metal. If up<E;, so that the barrier transmission
is slowly increasing with bias, this consideration

(2. 45)
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leads to a minimum in the conductance at eV = pup.
Although the above discussion assumes the conduc-
tion band of the semiconductor is centered at £=0,
this restriction is not essential. !*27 Since the
Fermi wave vector kp in the metal is larger than
the displacement %, in 2 space of a band minimum
in the semiconductor, direct tunneling transitions
can occur.

In this case the criterion for neglecting band
mixing, eVz<3E,, is to be evaluated with E,(k,);
in Si, E,(k,) is~ 4.5 eV. The generalization®” to
a nonspherical conduction band has also been car-
ried out and leads to only minor changes in the
predicted characteristics.

The CDMT model is most successful in a range
of semiconductor doping N, sufficiently large that
two-step real-intermediate-state tunneling?® is
unimportant, and small enough that the actual bar-
rier potential is well approximated by the average
potential V(z). In the high-concentration (thin-bar-
rier) limit, statistical fluctuations in the number
of ions in the barrier region make the average
potential less accurate. A figure of merit in this
regard is 7z=z§ND°CND'”2, the number of ions
contained in an area z3 of the barrier. If 7 is
small, its relative fluctuations An(¥)/% from point
to point along the barrier will be greater.

Since it is known experimentally that the barrier
height Vj is independent of donor concentration N,
we neglect fluctuations in V; and assume that fluc-
tuations in the local density of ions in the barrier
cause fluctuations only in the barrier thickness z,
and consequently in the parameter E,, (2.47). The
importance of such fluctuations in E, on the tunnel-
ing conductance arises from the exponential depen-
dence Gx ¢™"B/F1 with eV, > E,, which strongly
weights the fluctuations in the direction of increased
conductance.

We make a simple estimate of the conductance
increase the fluctuations afford. We imagine the
barrier divided up into units of area zf,, and sum
the conductances due to each of the small units.
We assume that the probability of finding » ions in
a unit is given by the Poisson distribution

Pn, )= @)"eT/n! .

Then the barrier fluctuation factor is

%g) = iP(n, 7i) exp[- (eVy/Ey)@/n) 23]/
n=0

exp(-eVy/E,) . (2.48)
Evaluated for Si:(1.6x10'® cm™P), with %#=9. 4 for
Z,=84 A, eV =0.85 eV, and eVy/E, =20, the bar-
rier fluctuation factor is 11.7, with the current
flowing dominantly through units with z=15. On

the other hand, for the case of the Pb/Ge: (7.5%10'®
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cm™? Sb)junctions for which agreement with the
CDMT model has been previously reported, " we
estimate the factor as 2.2. The larger value
7=183.7 and smaller exponent eVy/E,=18.2 in Ge
both reduce the importance of fluctuations.

While it is clear that the appropriate size of the
sampling volume is near zg, this may not be pre-
cise and consequently the factor quoted for Si is
probably uncertain by a factor of 2.

D. Localized Magnetic Moments in Schottky Barriers

Experimental evidence!! indicates that localized
moments are generally present in Schottky barriers
with doping N, not greatly exceeding the Mott con-
centration N, that these are located at the inner
edge of the depletion region, and that their charac-
teristics depend on the chemical species!? and con-
centration of the donors. We argue that the for-
mation of a thin layer of transiently localized
states, -well described by the Anderson model”
and resembling donor states, is indeed plausible.
The expected resemblance to the well-studied
donors permits additional estimates of the local
moment properties. For example, the g values
of noninteracting donors are generally known, and
in Si are close to 2.0. In addition, electron scat-
tering experiments?®* on P donors in Sidirectly in-
dicate an antiferromagnetic exchange coupling between
the donor and a conduction electron. The total
singlet spin-exchange cross section for the P do-
nor is measured to be 3 0, = 2X 1072 cm?,

In the idealized Schottky-barrier model described
above, the free carrier density is assumed to rise
continuously from zero at the inner edge of the de-
pletion layer to N in the bulk. This variation oc-
curs over a distance of the order of the Fermi-
Thomas screening length A 26

A =[enp/6nNpe?]M/ 2, (2.49)

which is ~10 A at N, = 10'° cm™®. On the other
hand, one may argue that near z,, where the elec-
tron concentration is less than the Mott critical
concentration N,, ¥ such that M(N,) = a¥, the effective
Bohr radius, those electrons present may tend to
localize. N, for P donors in Si is 4x10'® cm™3,
and somewhat larger for As donors. Indeed, as
the concentration Nj is reduced toward N, electron
localization occurs throughout the semiconductor
crystal. Near the inner edge of the depletion re-
gion the screening may be sufficiently reduced,
even for N, several times N, that localized elec-
tron states can appear, as indicated in Fig. 4(a).
This situation is described more precisely by
the Anderson Hamiltonian™® for a single localized
state “¢,, ” interacting with a set of conduction
states:

H=:Ek (%7 +20 €41y + Ungyng,
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FIG. 4. (a) Location of moments at inner edge of de-
pletion region. Band edge varies as ¢/ , where A is
Fermi-Thomas screening length. Vertical dashed line
corresponds to free-electron density of the Mott critical
concentration N,, and separates region of localized
states, on left, from region of delocalized states, on
right. (b) Highly schematic plot of T'4/U in the Anderson
model versus position z in the semiconductor. T ,/U
must be near zero in the depletion layer and exceed
unity in the degenerate bulk. T ,/U~1 corresponds to
the Mott transition; local moments with Jop=— (8/7)

X T'/U occur where T',/U<0.1.

(2. 50)

Here U is the Coulomb (repulsive) energy of a sec-
ond electron of opposite spin on the same site and
Vi 18 2 one-electron energy describing the mixing
of localized and free states. The energy €, <0 is
the one-electron level measured from the Fermi
level. The V,, term produces a broadening

+20(VigCle + Vigele,) .

FA=7’|V):¢|2PF (2.51)

of the localized one- and two-electron levels €, and
€, + U, respectively, which results from a second
electron hopping on and off. T, in the Hubbard
and Anderson’ models plays the role of screening
the Mott description, * and the ratio I',/U de-
scribes the effective-interaction strength. At
T,/U % 0.1, the state is localized and magnetic’
for T',/UZ 1.0, the state is delocalized. "3 The
latter condition also corresponds to the Mott de-
localization criterion.3* Quite possibly values of
T',/U greater than 0.1 but less than 1.0 are still
localized. If we refer again to the Schottky bar-
rier [Fig. 4(b)] evidently I',/U is large in the bulk
region and near zero in the depletion region; we
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may expect localized states near the inner edge of
the depletion region where I',/U~0. 1.

It has been shown'® that for I', /U< 1, the Ander-
son Hamiltonian can be transformed to remove the
Vs term and to include the s-d exchange inter-
action of Kondo, ! Egs. (1.1) and (2. 14), where J
is antiferromagnetic and has an explicit energy de-
pendence!®:

1 1
J(e):—2|VM|2[€_€d —e—(€d+U)] . (2.52)

Note that —J(€) has a minimum value at € =0, which
is

J(0)=2] Vg |20/ e,(e,+ U) .

In the symmetric case €;=~3U, by combining Eq.
(2.52) with T', of Eq. (2.51), one obtains

Jpg=(=8/m)(T,/U) .

Anderson’s estimate’ I',/U= 0.1 thus directly
implies from (2. 53) Jpp~-0.25, i.e., a first-
order g shift Ag=2Jpp~—0.5. Although (2. 53) is
strictly valid only for I', /U< 1, it is likely that
larger values of —Jp, will occur as I',/U increases
from 0.1 to~ 1.0, going to the right in Fig. 4(b),
before the state becomes delocalized.

An upper limit on the width of the layer in which
such localized donor moments may form is given
by the screening length A. As N, is increased, we
expect a correspondingly thinner layer and that the
moments will have a stronger exchange coupling,
Eq. (2.53). It is probable that for much larger
Np no localization will occur. The experimental
results, however, do indicate localized moments
in the case of P donors in Si at Np=1.6x10" cm™,
or Np=4N,.

In the limit of weak coupling I',/U~0, the donor
state provides a microscopic model of the local
moment. The most important parameter that such
a model provides is gy, the g value in the absence
of exchange coupling. For dilute donors in bulk
Si, g, values® are extremely close to 2.0. In the
case of interacting donors, we may ask if other
sources of g shift, apart from the exchange effect
above, will be important. One possible source of
other g shifts would be electric fields produced by
ionized donors. The wave function of the state may
thus be distorted, but it seems unlikely that any
orbital angular momentum could be mixed into the
s-like donor ground state because of the low sym-
metry of the local electric fields. We conclude
that g4 =2 is likely to be preserved.

The binding energy of the P donor in Si is 45
meV and the Bohr radius af =20 A.* Small con-
centrations of conduction electrons drastically re-
duce the spin-lattice relaxation time T'; of the do-
nor ESR in low-concentration samples. Analysis
of this effect® enabled Feher and Gere®! to deter-

(2.53)
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mine the cross section o, of the donor for spin
exchange with a free electron. The measured
value 0, =2%10"'2 cm? is extremely large, and
remarkably close to that obtained by scaling (for
the mass m* and dielectric constant €,) the hydro-
gen-atom estimate due to Oppenheimer: o, =7(12a¥)?,
which gives 0,=3%X10""2 cm?, ESR measurements®
on samples containing more than 3x10'® cm™® do-
nors show a narrow resonance characteristic of
free electrons. The conduction-electron spin-lat-
tice relaxation time T, deduced from the width of
this resonance is 3X 1077 sec. 3!

Elegant electron scattering experiments on P do-
nors in Si have been performed recently by
Honig, 2*% employing low temperatures (0. 3 °K)
and a magnetic field in order to achieve spin polar-
ization of the interacting donors. Honig concludes
that the zero-energy cross section for singlet scat-
tering 411A§ (donor and conduction-electron spins
antiparallel) exceeds the triplet cross section 4mA?
by a factor of 4.8, close to that predicted for the
hydrogen atom. It is possible further to deduce
that the singlet scattering length A, is negative,
while A is positive. Honig concludes that the
singlet P negative-ion state is bound, while a vir-
tual triplet state occurs in the continuum.3® Note
that the singlet state is precisely the doubly oc-
cupied state of the Anderson model. His experi-
ments thus confirm that the exchange interaction
is antiferromagnetic, in agreement with the Ander-
son model.

An estimate of N,, the number of local moments
per unit area, can be made on the assumption that,
where the local electron density falls below N, all
electrons are localized. 3 This criterion appears
to be most valid for N, = N,, and probably over-
estimates N, for N, > N,. The conduction-band
edge [see Fig. 4(a)] variation near the boundary of
the depletion region and the degenerate region is
taken® as

Vi(z)=upe=/*,
Here A is the screening length and now we take
2 =0 at the crossing of the Fermi level and the con-
duction-band edge, and V=0 at the bottom of the
conduction band.

The local carrier density corresponding to (2. 54)
is

(2. 54)

n(z)=Np(1 — e2/)*3/2 (2. 55)

In the region of interest, for N,=1.6X10! ¢cm™3and
N,=4x10" cm™, we have n(z)/N,<%. Hence the
local Mott transition occurs at z =z, where z,=0. 5X.
It is thus reasonable to expand the exponential and
retain only the linear term. Equation (2. 55) re-

duces to
n(z)= Np(z/2)%/2
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which gives
2,2 MN/Np)?/3 . (2. 56)
The number of moments per unit area, Ny, is
Ny = [ n(z)dz =3 NoMN,/Np)* /2 (2.57)

Taking Np=1.6%X10' em™, A=10 A, and N,=4x10"
em™, we estimate N,~0.6x10" cm™. As we will
see below, this is remarkably close to the estimate
based on the measured spin-flip conductance and
the donor spin-exchange cross section.

III. EXPERIMENTAL METHODS

We now turn to the experimental techniques used
in fabricating Schottky-barrier tunnel junctions on
single crystals of degenerate semiconductor, and
in measuring the exchange-tunneling component of the
differential conductance G(V) and its derivative
(d/dV)G(V). We have made these measurements
at temperatures down to 1.3 °K and in magnetic
fields up to 150 kOe.

A. Samples

Single crystals of Si containing P and As were
obtained from the Monsanto Chemical Co. in the
form of Czochralski boules about 1 in. in diameter,
with (111) axes. Disks 1 mm thick were cut to
provide spiders for Hall measurements. Disks
10 mm thick were cut and sliced into bars 2X4X10
mm®, with (111) normal to the 2X4-mm?® face, for
the tunnel junctions. Two low-resistance contacts
were provided on each bar by alloying gold in a hy-
drogen atmosphere (800 °C for 15 min). Chemical
analysis of the silicon for trace impurities by semi-
quantitative emission and spark source mass spec-
trographic techniques showed transition-metal im-
purity levels below 1 ppm.

Hall and resistivity measurements on spiders cut
from slices adjacent to the tunneling samples were
made at 300, 77, and 4.2 °K. Measured values on
Si: P of p and N, =1/Re at 300 °K were 0.0043
cm and 1.6%10'° cm™3, in agreement with the nom-
inal values. The temperature dependence agrees
with that reported elsewhere®® for similar degen-
erate samples. Magnetoresistance measurements
with H 1 T on Hall samples of Si: (1. 6X10'° cm™®
P) give Ap/p~-0.2%at 3 kOe and Ap/p=+2% at
132 kOe at 1.3 °K. %"

B. Junction Fabrication

The tunnel junction consists of an evaporated
metal dot on a {(111) cleavage plane of the crystal.
A sample is illustrated in Fig. 5, along with its
equivalent circuit. The intention in junction fabrica-
tion is to exclude chemical constituents other than
the degenerate semiconductor and the electrode
‘metal. This ideal is approached by cleaving the
semiconductor in a high-vacuum chamber duving a
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FIG. 5. (a) Tunnel junction on single-crystal silicon
bar, showing evaporated metal tunnel electrodes and
alloyed gold return contacts. Contact to evaporated
metal electrodes is made with a lightly tensioned gold
probe. (111) direction in the silicon bar is vertical.

(b) Equivalent circuit of tunnel samples. Ry, Rg, and
R, represent the tunnel junction dynamic resistance

dV/dl, the spreading resistance, and the alloyed con-
tact resistance, respectively. Current and voltage
terminals are labeled 7 and v. Ry is negl’gible in samples
studied.

rapid evaporation of the desired electrode metal.

The fixture used has been described elsewhere. *
Cleavage and positioning of a light stainless-steel
screen, which contains an array of 0. 02-cm-diam.
holes and is lightly spring loaded against the semi-
conductor bar, take ~0.02 sec. The pressure dur-
ing evaporation is < 10"® Torr, so that the monolayer
time is of the order of 1 sec. The evaporation
rates are as high as convenient, typically 10-40
A/ sec. These considerations indicate that, although
the electrode metal may conceivably have a few-
percent residual gas contamination, there is no in-
tervening layer between this metal and the silicon.
Prior to being mounted in the evaporator, two gold
Ohmic contacts (<0.5 ) were alloyed onto each
bar sample. Fine copper wires were then soldered
to the gold, so that it would not be necessary to
heat the sample after the cleavage. The result of
vacuum cleavage of a 2X4X10-mm? silicon bar is
a 2X4-mm? face with an array of metal dots. The
faces are generally rough with small areas of per-
fect (111) cleavage plane.3® It is usually possible
to find several dots situated on such an area, and
only such metal dots are contacted in tunneling
measurements.

The dots are 1000-5000 A thick. Contact to a
dot is established with a clean gold probe gently
tensioned against the dot. The gold probe is
~0.015 in. in diameter, formed by melting the end
of an 0.008-in. -diam gold wire in an oxygen gas
flame. Every effort is made to keep the gold probe
and the evaporated dot clean before contact is
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established. The samples were stored and trans-
ported in a vacuum desiccator, and showed no
change in properties during a month.

Important advantages of this procedure are that
the temperature of the junction is never raised
above 300 °K, giving no reason to expect a redistri-
bution of dopant atoms near the interface, and that
no chemicals are allowed to come into contact with
the semiconductor surface or the evaporated metal
film.

As indicated in Fig. 5, the tunneling sample al-
lows a 4-terminal measurement of the Schottky-
barrier junction to the extent that the spreading re-
sistance R is negligible. This series resistance
arises from constriction of the current-flow lines
in the semiconductor into the small area of the
evaporated dot, and is given by R,=p/2d. Evaluated
for diameter d=0.02 cm and resistivity p= 0. 0015
Qcm at 4.2 °K, we find R;~0.04 £ or ~3% of the
junction resistance R;, which we can neglect. This
conclusion is confirmed empirically by observation
of prominent Si phonons at the correct bias energies
and, more importantly, by the absence of any shift
in these phonon positions at 150 kOe. We can thus
rule out distortion from any bulk magnetoresistance
effect.

C. Harmonic Derivative Measurements

Standard methods®® were used to measure dV/dI
and d?V/dI? of the tunnel junctions as a function of
applied bias V. The circuit and instrumentation

Voltage
Lg_-Puss lsclu'ion] Sweep
ilter Amp. 37 R, Vo
a b i Atten-
9 uator
v [
Preamp
CR-4A 5
v Isolation
X i Amp.
71 ©
—] Scope
ef Ref |
Lock-in Recorder Lock-in Recorder
w) Y| dv (2w) Y |d2v/d12
1 HR-8 dT PAR- 121 /
Ix1 I Tx1
Filter a b a b
Pass
2w
Fig. 6. Instrumentation for simultaneous recording of

dV/dI and d°V/dI?. [See also Fig. 5(b).] Selector switch,
not shown, permits study of two tunnel junctions, of the
series resistance of the two return contacts (R;) on each
junction, and also allows substitution of a precision re-
sistance box for calibration. Isolation amplifiers are
Neff wide-band dc units and the low-pass filter has a
cutoff at 1 Hz. PAR model 121 lock-in has an internal
frequency doubler in the reference channel. Sample is
immersed in liquid helium in a metal Dewar positioned

in the Bitter electromagnet.
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are indicated in Fig. 6. Measurement of voltage
derivatives, rather than the more physically signif-
icant current derivatives, is advantageous when it
is important to minimize possible distortion arising
from non-negligible return contact resistance. In
the junctions studied, the tunneling resistance

Ry =dV/dl is typically 10-20 £ and the current and
voltage contact resistances R,~1Q. However, the
return contacts usually were somewhat non-Ohmic
at 4.2 °K, and occasionally R, increased to several
ohms at 150 kOe. In the circuit shown in Fig. 6,
errors in measuring the junction voltage V arising
from the contact resistance R, appear as R_/R;
where the amplifier input impedance R; is at least
20000 2, and are thus entirely negiligible. The

ac signal voltage S(¢) appearing across the potential
terminals of the tunneling sample is

dV AV coswt

SO=41 R, +Rp +R,

(3.1)

+1£V( AV >2cos2wt+
2d? \R,+R,+R, 2

and the source impedance is Ry +R,. The signals
referred to as dV/dI and d*V/dI?, detected synchro-
nously and plotted, are actually the coefficients of
coswt? and cos2wi¢ from this expression. It is evi-
dent that voltage or magnetic field variation in R,
and R, introduces distortion of order (AR, +AR,)/R,
in dV/dI and twice that in d®V/dI?. These errors
are reduced to a negligible magnitude by our stan-
dard choice of R, =100R;. The HP-200-CDR low-
distortion oscillator (see Fig. 6) was normally set
at 2500 Hz. The PAR CR-4A preamplifier (input
impedance 20 k) was normally operated at a

gain of 10. Its output was fed to a PAR HR-8 lock-
in to detect the w component, and through a band-
pass filter (UTC BPM 5000) peaked at 5000 Hz to
the PAR model 121 lock-in to detect the 2w com-
ponent. Calibration of the dV/dI charts and location
of the zero of d*V/dI? were accomplished by sub-
stituting a precision resistance decade box for the
tunnel sample. To avoid distortion of structure in
dV/dI versus V, the peak-to-peak value of the ac
voltage S(t) was maintained below 0.3 mV at high
field, below 0.1 mV at zero field above 1 °K, and
at 0. 005 mV in the zero-field measurement extend-
ed below 1°K.*

D. Measurements at High Magnetic Field

After adjustment of the gold probe contact and
testing of the junction characteristics at room tem-
perature, the sample was slowly immersed, without
precooling, in liquid helium, contained in a metal
immersion Dewar. The Dewar was then located
with its tail section in the 23-in. air bore of a
Bitter electromagnet capable of generating an
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axial magnetic field of 150 kOe. Normally, the
field H was parallel to the direction of tunneling.
Study of a transversely oriented sample gave iden-
tical results. Cooling below 4.2 °K was accom-
plished by pumping on the liquid helium. The tem-
perature of the immersed junction was determined
from the helium vapor pressure (1958 scale) as
measured by Wallace and Tiernan gauges, type
FA-160.

Two difficulties were encountered, which were
specifically associated with the high magnetic
field. The first was inductive pickup in the voltage
leads due to residual low-frequency ripple on the
field and to vibration of a loop formed by the po-
tential leads in a fixed field gradient. These noise
voltages were monitored on an oscilloscope, and
were in some instances as large as 200 puV at 150
kOe. Since neither of these signals is coherent
with the applied modulation, and since neither ex-
ceeds the desired first harmonic signal, they are
efficiently excluded by the phase-coherent detector
and do not contribute to modulation broadening. To
reduce noise on the x axis of the xy recorder set
at a sensitivity of 1.0 mV/in., a low-pass filter
was incorporated. The signal-to-noise ratio in
dV/dI measurements was always good, and that in
d2®V/dl? was ~10: 1withan ac signal voltage of 0. 3
mV peak to peak on a 20-§2 sample.

The second difficulty, occasionally encountered,
was an increase in resistance of as high as a factor
of 10 in one of the alloyed gold return contacts.
This behavior is not understood and was never ob-
served in-a Schottky tunnel contact. The standard
practice was to display the dV/dI spectrum of the
two return contacts in series at full field, and in
cases of contact resistance above a few ohms to ap-
propriately increase the value of R; or to reject
the junction.

E. Data Processing Procedures

At high field, measurements were made simul-
taneously of dV/dI and d?V/dI*. Both derivatives
were recorded to permit conversion of d2V/dI® to
d?1/dV? vy the relation

d?1/av?=—(d®v/de)av/d) . (3.2)
The dV/dI charts were calibrated by substitution
of a precision resistance box for the tunnel junction;
dV/dI was recorded for three calibration resistances
Ry to test for linearity in the measuring circuit.
Substitution of Ry for the sample served also to
determine the zero of d2V/dI® and to verify the
purity of the oscillator signal. A computer program
was written to calculate dV/dI and dI/dV from the
ordinate and calibration values Ry on the xy charts
and to calculate d2I/dV? using Eq. (3.2).
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IV. EXPERIMENTAL RESULTS
A. Background Tunneling Spectrum

The zero-field dV/dI characteristic of a Schottky
junction of Au on Si:P at 1.3 °K is shown in Fig. 7.
This spectrum, apart from the fine structure at
V=0 and V=18 mV, isindependent of temperature
below 4.2 °K. A similar curve, converted to con-
ductance and plotted on a semilog scale, is shown
in Fig. 8. The zero-bias resistance of such AulSi:
(1.6%10' cm™ P or As) junctions at 4.2 °K was
always between 10 and 20 ; these variations, which
could result from small variations in N, were not
accompanied by changes in the voltage dependence.
The dashed curve is the conductance numerically
computed from the CDMT model, '® taking parameter
values Vp=0.85 V, €,=11.7, m, = 0.26m,, N,
=1.6%10' cm™®, and z,=84 A, for junction area
3.1x10™* ¢cm?, and corrected with a barrier fluctua-
tion factor, Eq. (2.48), of 11.7. The experimental
curves show a conductance minimum at 25+ 2 mV,
about 20% higher than the calculated Fermi degen-
eracy, Ur=21 meV. The positive increment in con-
ductance produced by the TA phonon at 18. 3 meV
may contribute slightly to this shift, and to broaden-
ing of the minimum. The conductance minimum is
broader, and the conductance variation at larger
positive bias less rapid, than the theory predicts.

In the latter regard, comparison with the CDMT
model is similar to that reported for the case of
Ge. !

The barrier height Vz used for the comparison
of Fig. 8 was determined by capacitance measure-
ments on vacuum-cleaved Au-Si junctions with
4X10'® cm™ P donors. Our measurements yielded
the usual straight-line variation of C*2 versus V

T T T T T T T T T
50— .
Si:P
o 1.40°K .
g Au electrode
=
o 30 .
)
~N
3 20f- i
10— -
o ! ! I ! ! I ! L
-40 -30 -20 -10 [¢] 10 20 30 40
Bias, mV
FIG. 7. Zero-field dV/dI spectrum of Au | Si: P

junction at 1.4 °K. Note zero-bias conductance peak

and conductance increase at 18.5mV, corresponding to
the TA phonon. Broad maximum in dV/dI near V=25mV
locates Fermi degeneracy of semiconductor, consistent
with CDMT theory.
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FIG. 8. Conductance, plotted on semilog scale, for

typical Au junction on Si:(1.6x10®cm™3P), Dashed
curve is CDMT theory, corrected by Eq. (2.48), cor-
responding to parameter values €,=11.7, m, =0,26,
pp=21meV, Np=1.6x10%cm™>, V5=0.85V (see text),
and junction area 3.1 x10"4cm?. Experimental conduct-
ance level may vary by up to +40% in different junctions,
with no change in bias dependence; calculation is accurate
within a factor of ~4 (see text).

and V5=0.85+0.05 V. This result is in good
agreement with previous measurements by Archer
and Atalla* on samples with somewhat lower N,,.

A direct measurement of the barrier height on sam-
ples with Np=1.6x10" cm™ has not been possible
because of the difficulty in measuring the voltage
variation of the capacitance on junctions with a
voltage-dependent tunneling resistance as low as
10 Q. The parameters used in the CDMT and bar-
rier fluctuation calculations are all either directly
measured or are standard values. The theoretical
conductance level in Fig. 8 is approximately a
factor of 4 lower than that measured. The calculated
conductance, however, is very sensitive to any
errors that appear in the exponential factor. Thus
the error +0.05 V in the barrier height produces
an uncertainty factor of 3.2+1 in the conductance
level. The estimated factor-of-2 uncertainty in the
barrier fluctuation factor has been mentioned
above. Finally, a 10% error in the donor concen-
tration would lead also to a factor-of-2 uncertainty.
For these reasons, we consider the comparison of
experimental conductance level and the extended
CDMT theory to be satisfactory. The discussion
of Eq. (2.48) concludes that small areas of the
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barrier containing more ions than the average
transmit most of the tunnel current. As the di-
mensions of such areas may be smaller than the
wavelength of the electron tunneling, diffraction
may be significant, weakening the conservation of
k parallel to the junction, and possibly broadening
the minimum in dI/dV at eV =p,.*

The conductance threshold at 18.3 mV in Fig. 7
is believed to represent the onset of the Klein-
man!”™ % two-step tunneling process in which an
electron of energy exceeding 7wy, first tunnels
from the metal into a virtual state at £=0 in the
semiconductor, and then scatters from 2=0 to &,
with emission of a TA phonon of wave vector — k.
Proper phonon structure also occurs at V=-18.3
mV but is too weak to be evident in Fig. 7.

The majority of junctions were fabricated with
Au electrodes because of the chemical inertness
of the Au surface. Junctions fabricated with Ni
and In showed slightly increased conductance per
unit area, but were not different in other respects. !
In the case of In, the proper superconducting den-
sity-of-states structure appeared in the tunneling
spectrum at temperatures below the transition
temperature of 3. 41 °K.

B. Resonant Scattering Peak

A conductance peak of magnitude AG/G,~10% at
1.3 °K and width ~2 mV can be seen near V=0 in
Fig. 7, and is a characteristic feature of these
vacuum-cleaved junctions. In Fig. 9(a) an enlarged
view of dV/dI is shown. As previously reported, !
AG/G, is independent of the metal chosen as the
electrode but depends systematically on the donor
concentration N,. In addition, we find that at fixed
N, the peak depends on the donor species. At
1.3°K we find AG/Gy="7% in Si: (1.6X10* cm™ P)
and AG/G=~13% in Si: (1.6Xx10'° cm™ As), while in
other respects the spectra are similar. This in-
crease correlates with increased binding energy of
the As donor, 53 meV as compared to 45 meV for P.

In order to study the scattering peak in detail,
it is essential to separate carefully the anomalous
conductance from the background. There is every
indication, theoretically® and experimentally, that
the anomalous conductance is symmetric about
V=0. The conductance peak appears on a back-
ground that decreases approximately linearly with
bias V, and hence has a substantial component odd
in V. For these reasons the even conductance

GE(V)=L[G(+V)+G(- V)] (4.1)

was computed, after converting the dV/dI data to
G(V)=(dv/dI)™". We emphasize that this is permis-
sible because the G® and G® conductances are
even in voltage, 8 and very useful because the back-
ground G(V), apart from a constant, is nearly an
odd function of V. The remaining even component
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FIG. 9. (a) Detail of dV/dI spectrum near V=0, for Au | Si:As junction, showing zero-bias anomaly. (b) Even
component of the conductance G®)(V) obtained from curve in Fig. 9(a). Approximately parabolic residual background
conductance is evident beyond 3-mV bias. Theory predicts G (V)and G (V) to be even functions of bias voltage V.

of the background amounts typically to S10% of
G®(0), and is well approximated by a parabola BVZ,
Figure 9(b) shows the G (V) corresponding to

Fig. 9(a) and illustrates the typical even background.
A computer program found G®)(V) and fitted the
best parabolic background to G’(V) in the voltage
range 3.0-3.5 mV. This background conductance
was then subtracted to obtain G®(V). These steps
were carried out on each of a set of dV/dI curves
representing a set of temperatures. Resulting
G*®(V) spectra are shown in Fig. 10 for several
temperatures. The sharpening of the anomalous
scattering peak with decreasing temperature is a
striking feature of these curves. An important test
of the anomalous scattering is a plot of the magni-
tude G®(0)/G, of the zero-bias conductance peak
versus logT. As shown in Fig. 11(a), for one As

and two P junctions there are no significant devia-
tions from the straight-line log7 dependence for
temperatures between 4.2 and 1.3 °K. In the case
of one additional As junction, shown in Fig. 11(b),
measurements extended from 3.6 to 0. 36 °K, again
consistent with the logT dependence. The intercepts
at G(0)/G,=0 range from 7 to 11 °K and are some-
what higher for P as compared to As junctions.

We next compare the energy dependence G®(V)
with the Kondo-Appelbaum integral function F(eV),
Eq. (2.29). This was accomplished by fitting the
corresponding interpolation function,

G®(V)=-A{[(eV)?+ W2]/EZ} /2,

to each G®(V) curve. The best values in the sense
of least squares of A, W, and E; were obtained by

(4.2)

computer. This routine was carried out on curves
representing several temperatures on five different
junctions.

A set of comparisons typical of many obtained is
shown in Fig. 12. The fits are excellent at 4. 2 °K,
while small systematic deviations are noticeable
below 2 °K in all junctions studied. One should
bear in mind that these deviations must leave undis-
turbed the —logT dependence of G®(0).

In Fig. 12(f) the interpolation function is fitted to
numerically computed values of the integral function
F(eV). The fitted values of the parameter W, which,
according to numerical studies of the Kondo integral,
should increase nearly linearly with temperature,
are plotted T in Fig. 13.

The values of W for several junctions, represent-
ing both As and P donors, lie close to a line W=aksT,
with @ = 2.12. The fitted values of E, are near 2
meV, with a tendency to decrease slightly at lower

temperatures, for both P and As junctions. Since
A and E, are approximately independent of tem-
perature, the function (4.2), with W=2.12k;T,
quite well describes the spectra on a given junction
over a set of temperatures. The accuracy of this
approximation is indicated in a “universal” plot,
Fig. 14, of G®(V) values measured at 0. 1-mV in-
tervals on a Si: Asjunction at seven temperatures,
versus In[(eV)?+ (2. 12k, T)?]"/2.

C. Effect of High Magnetic Fields

Figure 15 shows dV/dl traces near V=0 from a
Si:Asjunction, T=1.3 °K, at magnetic fields rang-
ing up to 150 kOe. Plots of the even conductance,



3676 E. L. WOLF AND D. L. LOSEE

>

3
6 /6w L (b)
6?' /6% o |%
6 ogt o
o °
oo o o
S ° °
O] %
o o N R
S 4t %  4.2°K . 4 ., 30°K
Oo 00 o o
o o o o
o o o o
o o
s N 3 K 2l o
o 3 o o
o o o o
°°O 0°D °°° coo
S %, © %
Il | | | Pon ) il ! ! L 00,
" 00000 0ocaoho 000 00 5060000
-3 -2 -1 0 I 2 3 -3 -2 -l 0 I 2 3
Bias (mV) Bias (mV)
3
o |
12 ofo
(c) (d) FIG. 10. Anamalous conductance
) oo G®) (V) for a Au | Si:As junction at
G~ /G (%) several temperatures. Curves a, b
104 o, ¢, and d correspond to T=4.2, 3.0,
°° oo 1.94, and 1.26 °K, respectively.
o | o o | o
OB o 87'
1.94°K [.26°K o °
o o
o 6 ° ° 6 o
o o o o
° © o o
o 47 ° ° 4T o
o o o o
-] o ] o
o o o o
00 2_ o 00 2”’ o
o oo o Do
o % o 0y
°d°°° ooo% & %o,
coommboos®E—L 1 1 L 00,000000 000k 0% 1 1 L L%, 10000
-3 -2 -1 0 ] -3 -2 -l 0 I 2 3
Bias (mV) Bias (mV)

Eq. (4.1), after subtraction of the background, cor-
responding to G*®(V, H)+ G®(V, H) - G®(V, 0), are

0,=2%10"" cm?, discussed in Sec. IID. It follows
shown in Fig. 16, for two temperatures.

from Eq. (2. 24) for the spin-flip conductance G®
that the maximum field-induced fractional change
features of the behavior are: AG®/G® is S/(S+1), or % for S=4. Thus we can

(a) The conductance peak disappears at high field  estimate G®/Gy~0.15. Assuming a thin layer of
and is replaced by a conductance dip which increases magnetic moments of surface density N, (cm™®), the
in magnitude (up to ~ 10%) and half-width (up to ~ 1

Important

probability of an electron undergoing a spin flip in
mV) with magnetic field. traversing this layer is very roughly G®/G,. If
(b) The field-induced dip is severely broadened, the cross section for the process is o,, then N,0,
and the broadening also increases with field.

~G®/G,, which gives N,~10" cm™2. This compares
(¢) The background conductance |V|= 3 mV is favorably with the previous estimate, Eq. (2.57),
unaffected by the magnetic field. This implies that of N,=0.6x10" cm™ based on the model of a local
the basic barrier parameters are essentially un- Mott transition in the reserve region. Note that
changed by the field. Condition (c) indicates further  the implied spacing between moments is large, ap-
that the number of moments is independent of field. proximately 150 A.
We may estimate, in order of magnitude, the

The nature of the high-field conductance dip is
number of localized donor magnetic moments needed more clearly revealed in second derivative. Direct
to produce the observed 10% conductance dip at tracings of several d?V/dl® curves are shown in
leV!| <gugH from the spin-exchange cross section

Fig. 17. Typical reduced d’I/dV* spectra for

| DN
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FIG. 11. (a) Plots of the Kondo peak G®(0) versus logT
for one Au | Si:As and two Au |Si:P junctions. Con-
ductance background has been subtracted, as discussed
in the text. Increase of G*)(0) in Si:As as compared to
Si: P correlates with the larger binding energy of the
As donor. (b) Plot of the Kondo peak G)(0) versus logT
for a single Au | Si:As junction extending to a lowest
temperature of 0.36 °K. Note the 25% magnitude of
G®2(0) at 0.36°K and that the points do not deviate signif-
icantly from a straight line.

AulSi: As are shown in Fig. 18(a). Since d?I/dV?
=(d/dV)G(V) is the derivative of a function even in
voltage, and hence an odd function, we have plotted
the odd part of d’I/dV?. No attempt was made to sub-
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tract the background. The curves in Fig. 18(a) re-

veal that at high field, d?I/dV?consists approximately
of a broad peak at eV =4, which we identify as the

spin-flip threshold. For the moment, as an ap-
proximation we ignore possible dG'*/dV contribu-
tions at high field and proceed to plot in Fig. 19

the peak position A and half-width I', defined in

Fig. 18(a), against H. Since the Zeeman transition
apparently overlaps zero energy, we have estimated
T" from the high-energy half of the peak. The values
of A plotted in Fig. 19 fall reasonably on a straight
line throughthe origin, in support of our approximate
analysis. The slope of A versus H determines a

g value, which is 1.18+0. 04 for the As donor, cor-
responding to a large negative g shift Ag=-0.82 on
the assumption g;=2.0. In the case of P donors,
the g value is similarly found to be 0. 98 +0. 04.

The second important feature in Fig. 19 is the
large value and proportionality to H of the half-
width I'=0. 65A for As donors. We identify this
half-width with the lifetime-broadening equation
(2.35), from which, with the experimental g shift
and Eq. (2.33), we obtain a theoretical width
I',=0.53A. Similar agreement is obtained in the
case of P donors, where g=0.98 and I'=0. 84A
compares favorably with I', =0. 81A. A consistent
understanding of the small g value and large width
T is thus achieved as a direct consequence, through
Egs. (2.33) and (2. 35), of the exchange-interaction
equation (1.1). These results are approximate and
depend on justification of the assumntion that at
high fields the dG*®’/dV contributio. is small.

We have verified that this is the case by calculat-
ing the (d/dV)G*®(V, H) implied by the theory at
high field, given the experimental values of g, T,
and the zero-field spectrum (d/dV)G*®(V, 0). We
find that properly including the intrinsic high-field
broadening I' via Egs. (2.38) and (2. 39) in the Kondo
integral (2. 29) over intermediate spin-flipped
states in the third-order process greatly reduces
dG'®/dV at high field. This is shown in Fig. 20,
where for 150 kOe and 7T=1.25 °K, a comparison is
made between dG/dV calculated with I'=0. 65
meV and with I'=0. The cutoff E, has been set at
6 meV, somewhat greater than the fitted value, to
avoid artificial effects at eV, A= E,. For voltages
eV < E,, the calculated curves are insensitive to
E,. Similarly calculated dG'®/dV curves are
‘shown in Fig. 21. Comparison of theory with ex-
periment is shown in Fig. 18(b), where the dG'®/av
is calculated using I'=0. 65 meV, g=1.18, and
normalized by comparison to the H=0 experimental
curve, Fig. 18(a). The upper dashed curve is
dG®/av, also corresponding to I'=0. 65 meV and
g=1.18, with normalization adjusted by comparison
of the summed contributions (the upper solid curve)
with the experimental curve i in Fig. 18(a). The
required ratio of dG®/dV to dG®/dV is signifi-
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FIG. 12.(a)—(e) Energy dependence G‘¥(eV) of the Kondo conductance, shown as circles, compared with the interpo-

lation function, Eq. (4.2), for a Au | Si:As junction at temperatures 4.2, 3.0, 1.94, 1,28, and 0.4°K. (f)

Compari-

son of the interpolation function (4.2) with numerically computed values, shown as circles, of the Kondo integral, Eq.
(2.29). Values Ej=3meV and T=1,25°K were taken in computing the integral.

cantly less than predicted by theory.® We will
return to this point below. Figures 22 and 23 dis-
play G®(V, H) and G®(V, H) - G®(V, 0) similarly
calculated. Note in Fig. 22 the degree to which
the high-field conductance “overshoot” is reduced
by properly including the broadening effect. Finally,
in Figs. 24(a) and 24(b) we show families of theory
curves, G(V, H) and (d/dV)G(V, H), respectively,
which are to be compared with the experimental
curves in Figs. 16 and 18(a). The ratio of G® to
G® in Figs. 24(a) and 24(b) is that determined in
Fig. 18. We emphasize that all theoretical curves,
except those labeled I'=0, have been calculated
from Egs. (2.24), (2.28), and (2.29), in which the
broadening T is included by averaging all tanh(3B¢€)
and H(Be€) functions over a Lorentzian distribution
of width I, via Eqs. (2.38), (2.39), and (2. 42).
The same convolution has been applied to the tanh(zB¢€)
representing the magnetization (M) for S=% to
treat approximately the large broadening I"' which
accompanies the splitting A. Thus we have taken

(M) =S(A), Eq. (2.38). Note that this procedure
would be strictly correct in the case of an inhomo-
geneous width T,

As we have noted in Sec. II, the scattering oc-
curring at V=0 is the direct analog of scattering in
bulk samples containing magnetic moments. Thus
measurement of the conductance change AG at V=0
is equivalent to a magnetoresistance measurement.
The results for a Si:As junction at 1. 25 °K are
shown in Fig. 25. It can be argued® that in the low-
field limit, scattering from a magnetic system
should be proportional to (M)%, 1If (M) H, then
the conductance change will be proportional to H?,
Although this low-field behavior is not shown in
Fig. 25, we have in fact verified the H? dependence
for fields between 2 and 8 kOe. Further, we find,
for all fields, that AG(0, H) is nearly a function of
H/T as expected. These considerations should
hold even in the presence of third-order scattering.

Included in Fig. 25 as the conductance change
AG®) and AG®™ calculated on the basis of the con-
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FIG. 13. Fitted values of the parameter W in Eq. (4.2)
plotted against the temperature 7, for several junctions.
Each point in this plot corresponds to a fitted G** spec-
trum, such as those shown in Fig. 12. Dashed line is
the variation of W with T indicated by numerical studies
of the Kondo integral, Eq. (2.29).
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FIG. 14. Comparison of measured spectra at 0.1-
mV intervals on a Aul Si:As junction at seven tem-
peratures with the interpolation function Eq. (4.2).
Value W=2,12kzT corresponding to the solid line in
Fig. 13 has been assumed.
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FIG. 15. Effect of magnetic field on the dV/dI spec-
trum near V=0, for a Au | Si:As junction at 1,25 °K.
Magnetic field is perpendicular to current flow. Magne-
tic fields increase to 150 kOe, as labeled. Note inde-
pendence of baseline of magnetic field.
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FIG. 16. Effect of magnetic field on the conductance
peak at (a) 1.25 and (b) 4.2°K. Curves labeled a, b, c,
d, e, f, & h, and { correspond to magnetic fields 0, 18.8,
37.5, 56.3, 75.0, 93.8, 112.5, 131.2, and 150 kOe,
respectively. These results for H17 are similar to
results with HIl T,
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FIG. 18(a). Effect of magnetic
field on d?I/dV? for Au | Si:As junc-
tion at 1.73°K. Odd part of d2I/dV?
is plotted. Curves a, ¢, e, g, and i
correspond to 0, 37.5, 75, 112.5, and g ”
150 kOe, respectively. High-field ar/ s ':E: 4G
dV? peak closely approximates the Zee- z >
man transition spectrum of the local z o ;—;’ ok N
moments. (b) Theoretical d%I/dV? < I
curves calculated for H=0 and H=150 P
kOe for parameter values indicated. “ z T=1.73% ©le
Ratio G®/G'®) has been adjusted to
match curves a and 7 in Fig. 18(a), r : ?‘1685A
as described in text. 9=t
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FIG. 19. Plots
of estimated Zee-
man splitting A
and half-width
I versus H for
Au | Si:As junc-
q tion, T and A
are defined in Fig.
18 (a). Circles,
1. 25 °K; squares,
1.73°K.
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: (M)=5S(A)

| [ !
0 1.0 2.0 30

Bias mV

FIG. 20, Calculated dG'*/dV curves forfields 0, 37.5,
75, 112.5, and 150 kOe are labeled a, ¢, e, g, and i,
respectively. Small zero-field Korringa broadening is
included here and below by taking I'=7(Jpg)3(A+EkgT).

In curves a’ and ¢’, the broadening T is set to zero, for
H=0 and H=150k0e. Comparison of curves ¢ and i’ re-
veals magnetic field quenching of the Kondo scattering.
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FIG. 21. Calculated dG'*)/dV curves for fields 37.5,
75, 112.5, and 150 kOe are labeled c, e, g, and 7, re-
spectively. In curve ¢’ the broadening T is set to zero,
for H=150 kOe.
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FIG. 22. Calculated G®(V, H) curves for fields 0,
37.5, 75, 112.5, and 150 kOe are labeled a, c, e, g,
and #, respectively. Curves @’ and i’ have been calcu-
lated neglecting the broadening I'. “Overshoot” of G®
(V) at high field is greatly reduced by proper inclusion
of broadening T,
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siderations of Sec. II. As explained above, the
average magnetization (M) has been taken to be

7] S(A) rather than the usual Brillouin function
tanh(3BA), to treat approximately the large broad-
7] ening T'" accompanying the splitting A. The calcu-

['=7(Jp)° (A+KT) lated values of AG'(0) (the dashed line) and
-3 g=118 . AG'™(0) (the squares) saturate less rapidly with
T = 1.25°K increasing field would be the case for I'=0, i.e.,

for (M) =tanh(38A). On the other hand, the calcu-
lated values saturate more rapidly than the experi-
. mental curve (circles). We believe that the absence
of good agreement here reflects our lack of firm
. knowledge of (M) as a function of H in the presence
- Teo of strong exchange coupling. The properties of the
- exchange-coupled magnetic moments revealed by
the tunneling measurements are compiled in Table
. I. Additional parameters may be derived from the
information in the table. The Anderson level width
4 T', from Eq. (2.54), having taken U= 2E,, is esti-
mated to be ~0. 65 meV for As and ~0. 80 meV for
10 A L . | L P. The values of E; and Jpp and Eq. (1.2) predict
° LOBiOS (mv) 20 Ty values of 2.0 and 3. 2 °K for As and P, respec-
tively. The theory [Eq. (5‘.)1) belov:r] also allows
s : 3 2) ;

FIG. 23. Calculated G®)(V, H) — G¥(V,0) curves for ?hpred.lcftlon of th.e ratlo'G' (O)/AG""“‘. We dlS.C\.lSS
fields 37.5, 75, 112.5, and 150 kOe are labeled ¢, ¢, g, ese inferences in detail in the following section.
and i, respectively. Curve ¢ is shallower than curve i’,
calculated for 150 kOe withT'=0, in part by the choice
(M)=S(A), as explained in text.
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FIG. 24.(a) Calculated G(V, H) spectrum to be compared with experimental curves in Fig. 16(a). Curves labeled a,
¢, e, g, and i correspond to 0, 37.5, 75, 112.5, and 150 kOe, respectively. Ratio of G?/G® is consistent with Fig.-
24(). (b) Calculated (d/dV)G(V, H) spectra to be compared with Fig. 18(a). Ratio G*'/G® has been adjusted to fit

curves aand i of Fig. 18(a).
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FIG. 25. Magnetic-field-induced reduction in conduct-
ance at V=0 versus magnetic field. Circles, data for
Au | Si:As at 1.25°K; dotted line, theory for G, com-
puted with (M)=S(8); squares, computed from G®
theory.

V. DISCUSSION OF EXPERIMENTAL RESULTS

The zero-field spectra representing the energy
dependence of Kondo scattering across the tunnel
barrier shown in Fig. 12 are in good agreement
with the Appelbaum-Kondo perturbation theory.

The temperature dependence G®(0)c - logT was
accurately verified down to 1. 25 °K on many junc-
tions [Fig. 11(a)] and down to 0. 36 °K in one case,
shown in Fig. 11(b). We have never observed a
deviation from this behavior. Note that this con-
clusion follows directly from the data by subtraction
of the background, in which we have been particularly
careful, and does not involve assumptions about the
functional form of G®(eV).

One can infer from this, first, that both the Zee-
man levels of the local moment at H=0 and the
semiconductor final states at the Fermi energy are
sharply defined on an energy scale of k37T, or about
3x10™° eV at 0.36 °K. These level widths both ap-
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pear in the denominator of the integral in Eq. (2. 37)
and must cut off the logT dependence®! at log(T'/k3).
Thus, interaction between the local moments, e.g.,
the Ruderman-Kittel coupling considered by Suhl, 2!
does not measurably broaden the Zeeman levels. **
The extreme sharpness, ~0.03 meV, implied for
the semiconductor final states is evidence that they
are representative of the bulk of the electrode
rather than of some surface layer. From the un-
certainty principle, the electron must remain in

the final state for an interval A¢>7/AE, since its
energy has been measured with an error not ex-
ceeding AE. For AE=3%10" eV, this implies

At 2 2X10" sec. But the final state is charac-
terized by the Fermi velocity v = 1.5%10" cm/sec,
and a mean free path [ = 50 A. Hence, during the
measurement, the electron traverses a depth at
least Az= y(vzlAt)~ 1000 A. Since this greatly ex-
ceeds the dimensions z,=84 A and A~ 10 A charac-
terizing the interface, we are justified in associat-
ing the final states with the Fermi surface in the
bulk of the electrode. This conclusion, which prob-
ably is also valid in other instances of tunnel junc-
tions on cleavage planes of degenerate semiconductor,
shows that it is quite possible to probe bulk pro-
perties in such experiments.

Second, observation of the accurate -1logT de-
pendence as predicted by the perturbation treatment
indicates that complications related to the low-
temperature divergence and possible quasibound
state are not dominant in the temperature range of
the experiment. This supports analysis of the
magnetic field effects by extending the perturbation
theory of Kondo and Appelbaum, but raises questions
about the prediction, via Eq. (1.2), of Ty values of
2 and 3 °K.

Minor departures occur at low temperatures from
the energy dependence of G (V) predicted by the
integral F(eV), Eq. (2.29). We believe that these
departures do not imply a failure of perturbation

TABLE I. Properties of magnetic moments in Schottky-barrier tunnel junctions on Si with donor concentration
1.6x10®cm™. Ep is the isolated donor binding energy; G'/G is the relative magnitude of the anomalous (Kondo)
conductance; g is the g value of the local moment; Jpp is the exchange-coupling parameter; Teae is computed from
Eq. (2.35); and Ty, is the experimentally observed linewidth. E is obtained from fit of Eq. (4.2) to the zero-field
spectra, Values of G®(0)/AGR),, where G2} is the maximum field-induced conductance dip, are taken from curves such
as those shown in Fig. 16. Other parameter values applicable in both cases are S=3, g0=2, Ng~ 101em™?, af~ 201&,
0,=2%10"2cm?, 2,=844, and pp =21 meV, Assuming pp=3Np/4ly, estimates of J are 11 and 14 meV for P and As

donors, respectively.

¥ Y r r E c® o
Don?r Ep g JPF_"E cale obs ( OV) 2()
species (me V) Gy | 1.25%% 0 gugH ghgH me AG% | 125
As 53 ~0.12 1.18 -0.41 0.53 0.65
+0.04 +0.02 +0.05 +0.03 2.0+£0.2 0.6x0.1
P 45 ~0,07 0.98 —-0.51 0.81 0.84
+0.04 +0.02 +0.08 +0.04 2.1+0.2 0.75+0.1
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theory; such a failure would imply also an impor-
tant deviation®® of G*®(0) from - log7, which does
not occur. A more likely explanation is an energy
dependence in the exchange J, perhaps that pre-
dicted by the Anderson model, *° which is neglected,
apart from introducing the cutoff E, in the theory.
That energy dependence in J may be more impor-
tant here thanis metal-insulator-metal junctions is
suggested by the small fitted values of Eols’ * near
2 meV,

While the energy and temperature dependence of
G®(V) are in good agreement with the theory, we
find that Appelbaum’s theory, ® using the fitted
values of E; and Jpp, overestimates the magnitude
of Kondo scattering G'*)(V) relative to spin-flip
scattering G¥¥)(V). The magnitude of Kondo scatter-
ing at zero bias, G®’(0), compared with the maxi-
mum field-induced change in spin-flig scattering

AGE) =1im [G®) (0, 0) - G*(0, )],
Ha
from Eqgs. (2.24), (2.28), and (2.29), is predicted
to be

G®(0)/AGE) =85(S +1) Jp% In(Ey/ aksT).

For the case of an As-doped junction at 1.25 °K as
shown in Table I, the directly measured ratio
G®0)/AG), is ~0.6. This is considerably smaller
than the theoretical value, using S=3%, -Jpy

=0.41, E;=2 meV, and @=2.1, which from Eq.
(5.1) is 5.3. This discrepancy with the theory®
suggests that the effective expansion parameter in
the perturbation series is not Jpp In(E akyT) but a
smaller number. This could also explain why no
deviations from the log7 dependence related to
slow convergence in the series are seen, and thus
could make Eq. (1.2) an overestimate of the diver-
gence temperature. The directly measured values
of Jpy and E, and Eq. (1.2) determine a temperature
Ty = (Ey/ky) €'/ *F at which deviations from the per-
turbation results should be important. The pertur-
bation series is actually infinite at 0.7774.* The
prediction of T for Si:As is 2 °K, considerably
above the lowest temperature reached, 0.36 °K.
We will limit our discussion to the As case, since
the data cover a wider temperature range than in
the case of P.

Since the prediction of Ty from Eq. (1.2)is
quite sensitive to the value of Jp it is worthwhile
first to discuss possible sources of error. The
expected error in —Jpy from experimental error
in the g-value measurement is about 5%. There
may be some systematic error in obtaining E, for
Eg. (1.2) from the interpolation function, Eq. (4.2),
but not enough to remove the discrepancy.

A possibility for an overestimate of - Jpy from
the observed g shift is that the true susceptibility
of the conduction-electron spin system is not ac-
curately described by the Pauli formula, Eq. (2. 32),

(5.1)
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but is enhanced by a factor (1+8), 8>0. Thus
x=xp(1+B). It is conceivable, since the degenerate
semiconductor has a donor concentration only about
four times the Mott critical concentration, that an
exchange enhancement®® could be as large as 30%.
In this case 3(g—g,) = JousPr =J(1 +B)py; an enhanced
g shift would occur not because the exchange inter-
action is stronger, but because the conduction elec-
trons would polarize more readily. A value §=0.3
would lower the estimate of Ty by a factor of ~ 2,
by reducing the estimate of Jpr. On the other hand,
B>0 will not increase the level broadening
T'=n(Jp)%(grgH), so that on this interpretation the
calculated value T, would have to be multiplied by
(1+8)% thus a 40% reduction if 8=0.3. In view:

of the agreement between the observed I' and the
theoretical value I';, it seems unlikely that 8 could
be as large as 0. 3.

We conclude, assuming the validity of Eq. (1.2)
for T, that the experimental values imply
Ty =(2 £1)°K for As donors. On the other hand,
if T, were as great as 1 °K, deviations from the
logT dependence would be evident. We conclude
that the true value of T must be below 1 °K, prob-
ably below 0.3 °K, and that Eq. (1.2) is incorrect
in the present context.

It has been shown®® **that the effect of simulta-
neous potential scattering on exchange scattering
is to reduce the coefficient of the logarithmic term
G®(V) vy a factor f(n)=cos®) cos2n. This lowers
the divergence temperature, which is now deter-
mined by

Ty = (Ey/kp) eV 7ors" <0,

Here 7 is determined by the strength of the poten-
tial scattering through the relation tann= - ﬂVpF.
We assume that the simultaneous potential scat-
tering .does not change the relation Ag=2Jp,. We
can determine the value of 7 appropriate to As do-
nor moments to restore agreement between theory
and experiment for the ratio G®(0)/aG®,,, which
becomes, for S= 3,

G*™(0)/AG? ,, = 6Jpp cos2n In(Ey/ aky T).

Taking the experimental ratio 0.6 at 1. 25 °K, we
find cos2n=0. 11; thus Vp,=—0.29 and cos®y=0. 55.
From Eq. (5.2), the resulting estimate is Ty =0.3 °K
for Si:As and, similarly, T4 =0.7 °K for Si: P.
These estimates are consistent with the observed
log T dependence in Si: P to 1.3 °K and in Si: As to
0. 36 °K. This satisfactorily resolves the discrep-
ancy of G®/G® with the Appelbaum theory and
also explains the success of perturbation theory,
i.e., the absence of strong-coupling deviations
from -1logT in the experimental results below 1 °K.
We find the idea of potential scattering with Vpgz

= —0.29 to be plausible, particularly in view of the
connection with the neutral donor, which, as de-

(5.2)

(5.3)
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scribed in Sec. IID, is similar in its scattering
properties to the hydrogen atom.3® In this context
some potential scattering would be expected.

The results discussed thus far depend on a micro-
scopic model for the local moment primarily
through the assumption g, =2 made to determine
Jpy from the high-field spin-flip threshold. ** The
tunneling spectra with H and T as external param-
eters contain enough information to allow a fairly
complete comparison with theory without a micro-
scopic model for the moments. Indeed, some pre-
vious studies!® have been carried out without such
a model.

We have been interested, in addition, in under-
standing why local moments should occur in vacuum-
cleaved Schottky-barrier junctions, and have pro-
posed that they are transiently localized neutral
donor states at the inner edge of the depletion re-
gion. As such they are well described by the
Anderson model. The proximity of these states
to the degenerate portion of the semiconductor and
the close connection between the Anderson model’
and the Hubbard model® are consistent with a
strong electron-hopping interaction V,; correspond-
ing, through Eq. (2.51), to a large value of
T',/UZ0.1. This in turn implies by Eq. (2.53) a
strong antiferromagnetic s—d exchange coupling
—-dJpr20.25. This picture is supported by the ex-
periment, which gives for Si:As, Jpp=-0.41, or
I',/U=0.16. A less precise relation Ey~3U gives
U=~4 meV, and hence I'y~ 0. 6 meV, for the local-
ized donor state.

A success of the model is agreement between the
predicted local moment density N, ~0. 6 X 10" cm™,
obtained from an assumption of a local Mott transi-
tion, Eq. (2.57), and the estimate of N, based on
the donor spin-exchange cross section ¢,, and the
observed magnitude of the spin-flip scattering con-
ductance G®’/G,. Finally, the increase in G®*(0)
and slight decrease in coupling strength —dJpg, in
substituting As donors with a larger binding energy
for P donors, is consistent with the model. One
must consider, in addition, the previously noted
donor concentration dependence, 1 the independence

of the electrode metal, and the lack of an alternative
explanation for magnetic moments in vacuum-

cleaved junctions on substrates containing no tran-
sition-metal ions. In our view, the sum of this
evidence is unequivocal support for the localized
donor model. Indeed, it seems clear that the same
model accounts for weak zero-bias conductance
peaks that we have observed in CdS Schottky bar-
riers, % those reported in GaAs, *! as well as similar
peaks which were described as early as 1962 as a
fundamental feature of both Si and Ge p-#» junctions. 52
As mentioned in Sec. IID, at dopant concentrations
N, many times greater than the Mott concentration
N,, the localized donor magnetic moments are not
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expected to occur. *?

A discrepancy remains in connection with the
magnetization (M) as a function of H deduced from
the magnitude of the field-induced conductance dip
AG(0, H), shown in Fig. 25. The choice (M)
=tanh(384), for S=3, saturates much too rapidly;
the approximate form (M) =S(A), from (2. 38),
which would correctly describe an inhomogeneous
distribution of widths I', provides an improvement
but also saturates too rapidly. While a rigorous
generalization of the derivation of (S,) to the case
of large broadening I'~ guzH is needed, this alone
may not fully explain the behavior.

The possibility appears that the observed failure
of (M) to saturate is characteristic of the Anderson
model in the strong-coupling limit, when conduction
electrons are rapidly hopping on and off the local
site. Alternatively, one can say that conduction-
electron wave functions are strongly admixed into
the localized state. A plausible consequence might
be modification of the magnetization from a Brillouin
function to a behavior closer to the conduction-elec-
tron magnetization (M) =XpH, which does not satu-
rate. The conjecture that a nonsaturating Pauli
component may be mixed into the magnetization for
large V,,; is given some support by recent work on
the Anderson model® not restricted to I',/U<< 1.

A change in the temperature dependence of the sus-
ceptibility of the local moment from the Curie law
x«<1/T at T',/U~0 to a temperature-independent
Pauli susceptibility at I',/U> 1 is predicted. Al-
though the functional dependence of the magnetiza-
tion on H is not reported, such a change in the tem-
perature dependence might well be accompanied by
the corresponding change in magnetic field depen-
dence. Comparison with the new theory?® on this
point (as well as on the g values and magnetic-field-
induced broadening) would be of considerable in-
terest.

Finally, the comparison shown in Fig. 8 between
the CDMT theory and the conductance background
is regarded as satisfactory, although it is not as
close as the comparison reported'” for
PblGe: (7.5% 10'® cm™ Sb) junctions. The analysis
in Sec. II C indicates that fluctuations in barrier
thickness, arising from statistical fluctuations in
the number of ions, are important in the present
case, but almost negligible in the case of the
Pb|Ge: Sb junctions. !” One should realize that the
importance of fluctuation effects is a general fea-
ture of thin tunneling barriers, **% which is thought
to account in various metal-insulator-metal and
p—n tunnel junctions for conductances consistently
exceeding the theoretical values. ® Indeed, the
Schottky-barrier junctions appear unique in that the
effect of fluctuations can be readily estimated and
either neglected, as we have justified (above) for
the Pb|Ge junctions, ! or corrected for, as in the
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present case. Further work is required, however,
in refining the analysis of Sec. IIC and in extending
it to study the possible influence of fluctuation ef-
fects on the bias dependence of the conductance G(V).

VI. CONCLUSION

Taken as a whole, the experimental procedures
and measurements, the CDMT?® and Kondo!-Appel-
baum® theories, and the Anderson™®? and localized
donor'! models provide a remarkably comprehensive,
usually quantitative understanding of elastic, spin-
flip, and Kondo tunneling in the vacuum-cleaved
Schottky-barrier junctions which have been studied.
A reasonably complete understanding of the As and
P local magnetic moments and their s—d exchange
coupling, Eq. (1.1), has been achieved. Most of the
specific conclusions have been included in the ab-
stract and Table I.

Extension of these measurements to lower tem-
peratures to verify the revised estimates T, =0.7 °K
for Si: P and T, =0.3 °K for Si: As is feasible and
might complete a self-consistent specification of
all parameters of the s—d exchange-coupled mo-
ment. More importantly, this should permit a
spectroscopic study of the “condensed state” and
a check on the various theories.??® To make such
an interpretation unequivocal, it would be neces-
sary to rule out effects from interaction between
moments and to determine that the intrinsic level
widths of the final states do not exceed kzTy. While
this could be challenging, there is to our knowledge
no other tunneling system in which as many of the
relevant parameters are specified.

Another topic on which further work is indicated,
in our opinion, is the magnetization (M) of a local-
ized moment as a function of H, in the presence of
large broadening I'~gugH and in connection with
the Anderson model in the case I'y/U~1.

It appears from the present work and that reported
in Refs. 16, 17, and 50 that in the vacuum-cleaved
metal-semiconductor tunnel junctions to which the
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model of Conley, Duke, Mahan, and Tiemann'®
applies, at least semiquantitative agreement is
observed between the theory, using independently
measured barrier parameters, and the tunneling
conductance. This is an advance that should con-
tribute both to the design of new experiments and
to confident analysis of observed spectra.

In addition, in the present experiment we have
demonstrated that the final states in the electrode,
whose properties are revealed in the background
conductance, are representative of the bulk of the
electrode®® %8 rather than of a region close to the
barrier. As well as providing detailed information
regarding the interface region, such as that obtained
in the present study of exchange-coupled magnetic
moments, we anticipate that metal-degenerate-
semiconductor tunneling experiments will provide
additional spectroscopic information concerning
interactions in the bulk electrode.

Note added in proof. Measurements at zero field
have recently been extended to 0. 13 °K and do con-
firm the predicted difference between Si: As and
Si: P at very low temperature. The new data, con-
sistent with that in Fig.11, show a reduction of
G®(0) from the log T dependence below 0. 4 °K for
Si:As and below 1.0 °K for Si: P. In the latter
case G'®(0) is nearly constant below 0. 2 °K; hence
we believe that the voltage dependence for Si: P at
0.13 °K represents the Kondo scattering spectrum
well below T,. A report of this work will be sub-
mitted shortly.
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